Disclaimer

This presentation contains historical and forward-looking statements. The forward-looking statements involve risks and uncertainties. Forward looking statements appearing in this presentation represent management’s current estimates and these may change significantly as new information comes to hand, including statements that relate to, among other things, revenue forecasts, technology development progress, plans for shipment using the Company’s next generation technology, production plans, the Company’s markets, objectives, goals, strategies, intentions, beliefs, expectations and estimates, using such words as may”, “will”, “could”, “should”, “would”, “likely”, “expect”, “intend”, “estimate”, “anticipate”, “believe”, “plan”, “objective” and “continue” (or the negative thereof) and words and expressions of similar import.

Certain material factors or assumptions are applied in making forward-looking statements, and actual results may differ materially from those expressed or implied in such statements. Additional information about material factors that could cause actual results to differ materially from expectations and about material factors or assumptions applied in making forward-looking statements may be found in the Company’s most recent annual and interim Management’s Discussion and Analysis under “Risk and Uncertainties” as well as in other public disclosure documents filed with Canadian securities regulatory authorities. The information contained in this presentation has been obtained by Electrovaya Inc. from its own records and from other sources believed to be reliable, however no representation or warranty is made as to its accuracy or completeness. The Company does not undertake any obligation to update publicly or to revise any of the forward-looking statements contained in this document, whether as a result of new information, future events or otherwise, except as required by law.
Table of Contents

I. Electrovaya Overview

II. Market Overview

III. End Markets

IV. Appendix
Electrovaya Overview

Electrovaya Inc. is a global leader in the development and manufacturing of Lithium Ion batteries and energy storage solutions

- Founded in 1996 by Chairman & CEO, Dr. Sankar Das Gupta, and Dr. James Jacobs
- Headquartered in Mississauga, Ontario, Canada
- Currently trades on the Toronto Stock Exchange (Ticker: EFL)
- Electrovaya designs, develops and manufactures proprietary Lithium Ion SuperPolymer rechargeable batteries, battery systems and battery related products for the clean electric transportation, Utility Scale Energy Storage and smart grid power units
 - Produces clean Lithium Ion batteries utilizing a non toxic production process disrupts the present toxic chemical process (NMP)
- Electrovaya has applications for its technology in a wide variety of industries such as transportation, grid & stationary power and aerospace & defense

LTM Stock Price Performance

Financial Overview

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calendar Year Ended December 31,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revenue</td>
<td>$9.9</td>
<td>$2.8</td>
<td>$7.4</td>
<td>$24.5</td>
</tr>
<tr>
<td>% Growth</td>
<td>NA</td>
<td>(71.7%)</td>
<td>164.3%</td>
<td>231.5%</td>
</tr>
<tr>
<td>Cost of Revenue</td>
<td>5.9</td>
<td>3.2</td>
<td>5.2</td>
<td>(15.4)</td>
</tr>
<tr>
<td>Gross Profit</td>
<td>$4.0</td>
<td>($0.4)</td>
<td>$2.2</td>
<td>$9.2</td>
</tr>
<tr>
<td>% Margin</td>
<td>40.1%</td>
<td>(12.8%)</td>
<td>29.6%</td>
<td>37.4%</td>
</tr>
<tr>
<td>Selling, General & Admin</td>
<td>6.9</td>
<td>4.3</td>
<td>6.3</td>
<td>(5.7)</td>
</tr>
<tr>
<td>EBITDA</td>
<td>$0.0</td>
<td>$0.0</td>
<td>$0.0</td>
<td>$3.5</td>
</tr>
<tr>
<td>% Margin</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>14.3%</td>
</tr>
</tbody>
</table>

Note: Market data as of 6/3/2016.
Litarion: A Transformative Acquisition for Electrovaya

In May 2015, Electrovaya acquired Litarion GmbH, the largest Lithium Ion manufacturing plant in Europe

- Acquired 500 MWh plant, the largest in Europe
 - Acquired the plant for ($10) million
 - Has an estimated replacement cost of $750 million
- Includes Global Rights to unique high temperature Ceramic Separator, SEPARION™, which provides superior safety to conventional B787 Lithium Ion as well as a more environmentally friendly non-toxic process
 - Technology is protected by approximately 300 patents
 - German auto company, Daimler, who previously controlled the technology had never reported a single safety incident
- Cells with SEPARION™ separators and Litarion electrodes have been shown to deliver more than 9,000 deep discharge cycles, which is more than double the industry standard of 4,000 cycles
Product Portfolio

<table>
<thead>
<tr>
<th>Electrodes and Separator</th>
<th>Recent €18 million order announced for Litarion Electrodes Technology has a proven track record as it has been used in approximately 20,000 vehicles with no safety incidents The launch of a thinner version extends the product family Estimated addressable market of $2 billion</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEPARION™</td>
<td>Previously exclusive use for Daimler only Ability to withstand temperatures of up to 700 degrees Celsius contributes to outstanding safety Approximately 300 patents protect the disruptive technology</td>
</tr>
<tr>
<td>Litacell LC-40</td>
<td>Provides outstanding cycle life and unique safety features Serves as the leading-edge solution for most demanding applications Launched in Q4 2015 with the next generation scheduled to be released in Q2 2016</td>
</tr>
<tr>
<td>Litacor-1000</td>
<td>Building block for all of Electrovaya’s stationary and motive power systems Produced in four configurations for different power and energy needs Diverse applications can be addressed with same unit: e.g. home storage, utility-scale storage, e-buses, forklifts</td>
</tr>
</tbody>
</table>
Focus on Product Development Delivering Increasing TAM

The acquisition of Litarion has expanded Electrovaya’s product portfolio and opened new opportunities in many different end markets.
Expanded Market Opportunities

Electrosvaya Pre-Acquisition
- Prior to acquiring Litarion, Electrosvaya already possessed an extensive customer base

Litarion Pre-Acquisition
- Prior to the acquisition by Electrosvaya, Litarion only operated in the automotive industry with Daimler being their only customer

Post-Acquisition
- Post acquisition, Electrosvaya and Litarion now operate in the Energy Storage/Smart City/Micro-Grid, Industrial and Specialty sectors with many top customers and the ability to scale production

<table>
<thead>
<tr>
<th>Electrosvaya Pre-Acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TATA MOTORS</td>
</tr>
<tr>
<td>hydro one</td>
</tr>
<tr>
<td>TORONTO HYDRO</td>
</tr>
<tr>
<td>ABB</td>
</tr>
<tr>
<td>Scottish and Southern Energy</td>
</tr>
<tr>
<td>Walmart</td>
</tr>
<tr>
<td>Mondelēz International</td>
</tr>
<tr>
<td>SOLUND VERFT AS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Litarion Pre-Acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAIMLER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Post-Acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAIMLER</td>
</tr>
<tr>
<td>TATA MOTORS</td>
</tr>
<tr>
<td>hydro one</td>
</tr>
<tr>
<td>TORONTO HYDRO</td>
</tr>
<tr>
<td>ABB</td>
</tr>
<tr>
<td>CHUBU Electric Power</td>
</tr>
<tr>
<td>Scottish and Southern Energy</td>
</tr>
<tr>
<td>Walmart</td>
</tr>
<tr>
<td>Mondelēz International</td>
</tr>
<tr>
<td>Leclanché</td>
</tr>
<tr>
<td>NASA</td>
</tr>
<tr>
<td>conEdison</td>
</tr>
<tr>
<td>SOLUND VERFT AS</td>
</tr>
</tbody>
</table>
Recent Customer Wins

Since the acquisition of Litarion in May 2015, Electrovaya has won multiple new contracts with customers around the world

- May 26th, 2016 – Signed a Multiyear Service Agreement with a US based Fortune 1000 OEM to supply Lithium Ion Battery Modules, Battery Management Systems and related services
 - The agreement is expected to generate revenues of up to $80 million beginning in 2016 and accelerating in 2017

- April 13, 2016 – Received a $4.2 million purchase order to supply Lithium Ion cells for an energy storage application

- January 12, 2016 – Received $16 million purchase order from Targray, an Advanced Materials supplier in the Alternate Power and Energy space, to supply 40 Ah Lithium Ion cells (Litacell-LC40)

- September 1, 2015 – Signed a contract worth approximately €18.5 million to supply Lithium Ion battery products to a German company in the non-automotive space

- July 5, 2015 – Announced second program with Leclanche to supply the high performance value-added anodes and cathodes for the design and build of a 4.2 MWh lithium ion battery for the world’s largest all electric ferry
 - The ferry will operate in Denmark and have the capability to carry up to 130 passengers and 36 cars

- June 2, 2015 – Received a purchase order for SEPARION™ from a leading Chinese battery company, worth $1 million in 2015 and expected to grow to larger amounts in 2016
 - Electrovaya estimates China alone can absorb over $15 million of SEPARION™ in 2016
Expansion Opportunities

Non-Toxic Electrode Mfg. allows purchase of Stranded Assets in EU, USA and Japan

Electrovaya’s Green Production:

- No air emission
- No use of toxic NMP chemicals
- Allows lowest cost production
- Billion dollar Stranded Plants available

Distillation System

ELIMINATED

NMP Solvent: 300 Foot Drier

ELIMINATED

Solvent Recovery Tower

ELIMINATED
MARKET OVERVIEW
Global Energy Storage Market Growth Forecast

- Addressable market of more than $3.5B by 2023 for Electrovaya
- Overall market value is expected to reach $114 billion by 2017 and $400 billion by 2030\(^{(1)}\)
- Grid energy storage market expected to reach 21GW by 2024
- 44% annual CAGR
 - Driven changing utility landscape requiring significantly more energy storage capacity
 - Development of new generation technologies including flow batteries
 - Li-ion batteries are expected to dominate short-duration market segments
- Revenue is estimated to grow at a CAGR of 63% annually to reach nearly $24.5B in 2024
- Utility market growth 45% CAGR
- Microgrid market growth 35% CAGR

(1) Source: Lux Research and The Boston Consulting Group
END MARKETS
Lift Truck Battery

Lift truck batteries represent a potential $240 million opportunity for Electrovaya over the next three years

- Ultra safe, long cycle life battery, fast charging, 3 shift ops
- Lead acid needs high maintenance
- 3 Lead batteries per truck for 3 shift operations
- Addressable markets:
 - Navigant Research expects sales of advanced lead-acid
 - Li-ion, and fuel cell forklifts in North America to reach over 47,000 units (~$1.4 billion) by 2025 up from approximately 10,000 units (~$300 million) in 2016
- Sales through OEM
- Direct sales to large users and distribution centers
All Electric Busses & Trucks

Electric busses and trucks represent a potential $200 million opportunity over the next three years

- Demand for large electric bus lithium-ion batteries is expected to grow to nearly $30bn by 2026
- Electric buses will be one of the biggest sectors for Lithium Ion battery demand
- Demand growing in Europe with new advanced technology being the driver
- City of Paris announced 4,500 all electric bus fleet
- Typical electric bus costs ~ $500,000 - $600,000
- Typical battery for a bus is ~ $140,000 - $200,000
- Key Factors: Safety and Long Cycle Life
Other Motive Applications

- Automotive: all German automakers are launching electric vehicles – Porsche, Audi, VW, BMW and Daimler
- Electric Ferries and Marine
- Speciality
 - Golf
 - Airport & mining vehicles
 - Postal delivery vehicles
 - Other
Stationary Energy Storage Applications

Electrovaya has identified many different opportunities for high cycle life & long life energy storage requirements

- Identified markets include:
 - Energy Storage for Ancillary Services
 - Energy Storage for Micro Grid Applications
 - Energy Storage for Renewable integration
 - Energy Storage for Local Distribution Companies
 - Industrial Applications (Stationary)
 - Residential & Commercial Energy Storage

MWh Scale Energy Storage Systems for Ancillary Services, Micro Grid and Renewable Integration Applications

KWh scale Systems for Distributed Energy Storage Applications

Cabinet based ESS racks that can be used by any integrator for energy storage applications. Customers would leverage the Electrovaya cycle life advantage.
Key Executive Management

Dr. Sankar DasGupta
CEO & Chairman
Sankar is a serial entrepreneur and an award-winning scientist with over 50 US patents. He has led Electrovaya as a stable publicly traded battery company for over 15 years and spearheaded the acquisition of Evonik Litarion. Received his PhD from Imperial College London.

Dr. Ing. Andre Mecklenburg
General Manager & CTO (Litarion)
From 2008 to 2013 head of process technology at Evonik Litarion GmbH. Since 2013 Dr. Mecklenburg is responsible for the division operations focusing on production, plant maintenance and supply chain management at Evonik Litarion and now Litarion GmbH. He received his PhD in Chemical engineering from Clausthal University of Technology.

Rajshekar DasGupta
Vice President, Business Development
Dr. Raj joined Electrovaya in 2009 after PhD in Material Science from Univ. of Cambridge. Earlier attended MIT and Imperial College. Led core technology development and the development of Electrovaya’s grid Energy Storage Systems. Leads the business development activities and a strong growing sales team in Canada, Germany and China.

Fritz Mueller
Director, Sales & Marketing Europe
Over 25 years experience in sales to majors German corporations like Bosch, Siemens, Daimler and EPCOS. Engineer from Tech. Univ. of Berlin.

Richard Halka
EVP & CFO
Richard specializes in leading high-tech companies during periods of rapid growth. Previously, he was EVP & CFO of Iridium Satellite, then the world’s largest commercial satellite network operator, where he led its private-equity turnaround. Richard joined Electrovaya to help guide the company through its planned rapid growth strategy.

Gitanjali DasGupta
VP, OPS & GM (Electrovaya)
Gitanjali has completed change management of Electrovaya’s operations and has positioned the company for growth. Previously, Gitanjali led Electrovaya’s automotive business. She attended Toronto & Oxford Universities and was a Sloan Fellow at Stanford University’s Graduate Business school.

Michael Shelton
Director, Supply Chain Management
Joined Electrovaya in 2015 as part of the company’s growth strategy. Exceptional experience with developing global supply chains across many supplier subcategories during new product development and introduction. Had leadership positions in supply chain management at Siemens Energy Group, Satcon, RIM & Omron.

Dr. Joerg Reim
Director, Product Development
Dr. Reim brings over 10 years of experience in Lithium Ion Technologies at Evonik, having worked in Product Development, Application Technology and R&D.
Investment Highlights

Using combined technology & experience from Electrovaya and Evonik Degussa, Electrovaya solves four main critical challenges in Lithium Ion

| Cost | Non toxic production process disrupts the present toxic chemical process (NMP)
| | Substantially lowers capital expenditures, operating expenses (~55%) and energy costs (~80%)
| | Makes the billion dollar investments in NMP based plants obsolete
| Safety | Acquired global rights to a unique ceramic imbedded separator
| | Approximately 300 patents support a 10 million square meter plant in Germany
| | 20,000 smart electric vehicles running with zero safety incidents
| Cycle Life | More than double the industry standard of 4,000 cycles
| | ~9,000 cycles, 1C charge/discharge, 100% depth of discharge
| | Graphite and NMC electrodes
| Scalability | Scale allows for mass production of batteries at lower costs and more quickly than competitors
| | Provides opportunities to expand into many different end markets
| Other | Allows production in environmentally regulated jurisdictions such as the United States, Japan and Europe
| | Non NMP improves electrode microstructure and increases energy density |
Key Growth Drivers For Energy Storage

<table>
<thead>
<tr>
<th>Market Driver</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing renewable energy deployment</td>
<td>› Growing share of intermittent renewable energy source such as PV or wind requires energy storage to ensure grid security and stability
› Renewable energy combined with storage allows the creation of environmentally friendly base load energy
› Over the medium term, global renewable electricity generation is projected to grow by almost 45%, or 2,245 TWh, to over 7,310 TWh in 2020</td>
</tr>
<tr>
<td>Growing adoption of micro-grids</td>
<td>› Increasing need for flexibility and integration of renewable energy sources drives demand for micro-grids, especially for commercial energy producers and asset owners
› Renewable energy adoption also fosters deployment of decentralized energy production
› Annual distributed generation vendor revenue expected to reach nearly $10B by 2023</td>
</tr>
<tr>
<td>Diesel substitution for off-grid applications</td>
<td>› Large installed base and growing annual demand for diesel generators represents potential for substitution through energy storage systems
› Especially in specific geographic regions such as Southeast Asia, with a significant number of remote islands, renewable energy combined with battery storage systems is cheaper and cleaner than diesel generators over time
› In addition, the off-grid market continues to bear significant market potential as well</td>
</tr>
<tr>
<td>Increasing share of e-mobility and need for renewable energy</td>
<td>› Strongly growing sales of light-duty electric vehicles requires further charging infrastructure
› Electric vehicle sales expected to reach more than six million vehicles by 2023
› While the largest share of electricity for electric vehicles is generated by conventional energy sources, energy storage systems can provide for electric charging from 100% renewable energy sources as well avoid potential grid investments needed to cope with increased demand from charging stations</td>
</tr>
<tr>
<td>Regulatory framework</td>
<td>› The regulatory pressure promoting and in some cases even requiring the deployment of energy storage is rising
› CA is one of the leading markets for energy storage where a mandatory storage capacity of 1.3GW needs to be installed by 2020
› Italy initiated an incentive scheme for investors installing energy storage facilities while Spain is expected to launch a similar program in 2017
› Further interesting markets that have made forays into implementing further regulatory frameworks are NJ, NY and TX in the USA as well as Norway</td>
</tr>
</tbody>
</table>

- Number of favorable key trends, especially growing share of renewable energy generation, driving demand for energy storage systems
- Additional opportunities such as substitution of diesel generators by energy storage systems creates further addressable market potential

1. Source: Cellstrom, Navigant Research
Battery Systems

Common ‘Lego’ building blocks (cells, battery modules, battery management) are leveraged across multiple verticals

Each sector could become multi-billion dollar markets.
Electrodes and Separator

- LITARION Electrodes: recent Euro 18 million order announced

- SEPARION Ceramic Separator: World’s only ceramic separator based on PET non-woven support

- Strong track record
 - Approximately 20,000 vehicles in operation without incident

- Launch of a thinner version extends product family

- Separator addressable market is estimated to be approximately $2 billion
Previously exclusive use for Daimler products only
Outstanding safety: stable to temperatures up to 700°C
~300 patents
Disruptive technology

Full ceramic material supported by PET non-woven:

PET non-woven support

Flexible ceramic separator (SEM cross-section)

Ceramics (Surface view)

Outstanding temperature Stability

→ Ceramic material is impregnated into the supporting non-woven.
LITACELL LC-40

Officially launched in Q4 2015 with the next generation scheduled to be released in Q2 2016

- **LITACELL:**
 - Provides outstanding cycle life and unique safety features
 - Serves as the leading-edge solution for the most demanding applications

- **Key Features:**
 - Superior cycle life & extraordinary safety due to LITARION® electrodes and SEPARION® ceramic separator.
 - Design and components made in Germany, manufactured according to ISO:9001 and ISO/TS 16949

- **Addressable Markets:**
 - Launch customer with US$ 16 million order
 - Addressable market: over $ 200 Million

Extraordinary Cycle Life Performance:
9000 cycles at 1C/1C (Ch/DCh), 3000 cycles at 3C/3C (Ch/DCh)

Data obtained in 40 Ah cells at 100% DOD, 3rd party measurements
Utility ESS: Toronto Hydro

- Containerized BESS designed for 1.5MWh/300kW, but capable of 1.5MWh/1MW
- Integrated into a single container including ABB inverter/transformer and control system
- Safety systems include integrated thermal management, advanced BMS, fire suppression and mechanical systems

Electrovaya 1.5MWh Battery Energy Storage System installed in Toronto, Ontario. The System includes the ESS, PCS and transformers integrated in a 45’ container.
Scottish and Southern Energy ESS

- 25 ESS installations across multiple locations in SSE’s network near London, UK. Size ranges from 12.5-50kWh/36kW and installed completion Q2/Q3 2016

- Energy storage systems are highly advanced and capable of frequency regulation, phase balancing, active harmonic mitigation and energy storage back-up power

- Designed for high reliability and safety and installed along UK streets
Roof-top Solar Energy Storage System

- Electrovaya was selected to produce an integrated energy storage system for their roof-top solar installations

- Electrovaya was selected due to the long cycle life and reliability of the ESS units for these difficult to access locations

- Starting to deliver 50 units/month of 4kWh per unit from January 2016